
Scalable NUMA-aware Blocking Synchronization Primitives
Sanidhya Kashyap Changwoo Min Taesoo Kim

Georgia Institute of Technology

Abstract
Application scalability is a critical aspect to efficiently
use NUMA machines with many cores. To achieve that,
various techniques ranging from task placement to data
sharding are used in practice. However, from an operat-
ing system’s perspective, these techniques often do not
work as expected because various subsystems in the OS
interact and share data structures among themselves, re-
sulting in scalability bottlenecks. Although current OSes
attempt to tackle this problem by introducing a wide range
of synchronization primitives such as spinlock and mu-
tex, the widely-used synchronization mechanisms are not
designed to handle both under- and over-subscribed sce-
narios in a scalable manner. In particular, the current
blocking synchronization primitives that are designed to
address both scenarios are NUMA oblivious, meaning
that they suffer from cache line contention in an under-
subscribed situation, and even worse, inherently spur long
scheduler intervention, which leads to sub-optimal perfor-
mance in an over-subscribed situation.

In this work, we present several design choices to im-
plement scalable blocking synchronization primitives that
can address both under- and over-subscribed scenarios.
Such design decisions include memory-efficient NUMA-
aware locks (favorable for deployment) and scheduling-
aware, scalable parking and wake-up strategies. To vali-
date our design choices, we implement two new blocking
synchronization primitives, which are variants of mutex
and reader-writer semaphore in the Linux kernel. Our
evaluation results show that the new locks can improve
the application performance by 1.2–1.6×, and some of
the file system operations by as much as 4.7×, in both
under- and over-subscribed scenarios. These new locks
use 1.5–10× less memory than state-of-the-art NUMA-
aware locks on 120-core machine.

1 Introduction
Over the last decade, microprocessor vendors have been
pursuing the direction of bigger multi-core and multi-
socket machines [19, 33]. For example, a single sys-
tem can have up to 4096 hardware threads that are or-
ganized into sockets, known as NUMA (Non-Uniform
Memory Access) domains [33]. They address a key prob-
lem of removing the memory access latency bottleneck
by directly attaching multiple CPUs to a large chunk of
memory (DRAM). Furthermore, these machines have be-
come a norm to further scale applications such as large
in-memory databases (Microsoft SQL server [28]) and
processing engines [34, 41].

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

0 20 40 60 80 100 120

M
op

s/
se

c

#thread

(a) Directory read

0.0

5.0

10.0

15.0

20.0

25.0

0 20 40 60 80 100 120

G
B

#thread

(b) Memory usage
Vanilla
Cohort

CST

Figure 1: Impact of NUMA-aware locks on a file-system micro-
benchmark that spawns threads to enumerate files in a shared
directory [29], which stresses the reader side of the reader-writer
semaphore (rwsem). Figure (a) shows the impact of locks on
the throughput till 120 threads on a 120 core machine, where
Vanilla is Linux’s native version, Cohort is an in-kernel ported
version of NUMA-aware lock [17], and our NUMA-aware lock
implementation (CST). Figure (b) shows memory usage that
use these locks before and after the experiments.

A NUMA machine consists of multiple sockets, where
each node has a locally attached memory, a last-level
cache and multiple CPUs. It only exposes a flat cache-
coherent architecture to software by hiding the underlying
hardware topology from the applications. Unfortunately,
this flat architecture hinders the scalability of applications
as the applications may either suffer remote memory ac-
cess or from the contended memory access from multiple
CPUs, thereby degrading their performance [2, 4].

To achieve scalability in NUMA machines, various
applications such as databases, and OS rely on NUMA
partitioning to mitigate the cost of remote memory access
either by data placement or via task placement to achieve
high performance. However, this approach does not solve
the problem of how to efficiently modify shared data struc-
tures such as inodes, dentry cache or even the structures of
memory allocator that are shared among multiple threads.
As a result, synchronization primitives become the basic
building blocks of such multi-threaded applications, and
are critical in determining their scalability [4]. Hence, the
state-of-the-art NUMA-aware locks [6, 7, 12, 13, 17, 25]
are the apt choice to efficiently exploit the NUMA be-
havior, and also achieve scalability on these architectures.
Unfortunately, they are difficult to adopt in practice due
to their inherent memory overhead.

For non-blocking locks, Wickizier et al. [4] showed that
a Ticket lock suffers from cache-line contention with in-
creasing core count. They replace it with the MCS lock to
mitigate such effect, improving the system performance.
However, its adoption faced several challenges due to
the memory constraint of the spinlock [23]. Similarly,
for blocking synchronization primitives, there are various

1

problems: first, OS developers believe that there is not
much contention on these primitives as evidenced by the
use of their test-and-set lock or its variant [16, 21, 39].
But this does not hold true for machines with large core
count (Figure 1). Secondly, the existing blocking synchro-
nization primitives [13, 36] are NUMA-oblivious, and
also suffer from high memory management cost for every
lock acquisition. This can severely degrade the perfor-
mance of the system running on machines with large core
count [11, 20]. Thirdly, NUMA-aware locks suffer from
memory bloat issue as they statically allocate memory
for all sockets for each lock instance, which is a serious
concern in an OS [5].

In this work, we design and implement two scalable
blocking synchronization primitives, namely CST-mutex
and CST-rwsem, which are variants of mutex and a reader-
writer semaphore (rwsem) in the Linux kernel. Our primi-
tives are memory-efficient, support blocking synchroniza-
tion, and are tightly coupled with the scheduler, thereby
resulting in better scalability beyond 100 physical cores
for both under- and over-subscribed situations (tested up
to 5× over-subscription). To support the blocking be-
havior, we incorporate the timeout capability for waiters,
including readers and writers, in which waiters can park
and wake-up without hurting the system’s performance.
We rely on three key ideas to implement a scalable block-
ing synchronization primitive. First, we consciously allo-
cate memory by maintaining a dynamic list of per-socket
structures that are a basic building block of NUMA-aware
locks. Second, instead of passing the lock to a particular
waiter, we pass it to a not yet parked waiter (still spinning).
This removes the scheduler intervention while passing the
lock to a waiter. Last, we keep track of parked waiters in
a separate, per-socket list without manipulating the actual
queue maintained by the lock protocol. Thus, our block-
ing primitives improve the application performance by as
much 1.2–1.6×, and is 10× faster than existing blocking
primitives in over-subscribed scenarios for various micro-
benchmarks. Moreover, our approach uses 1.5–10× less
memory compared to the state-of-the-art NUMA-aware
locks.

In summary, this paper makes three following contribu-
tions:

• Memory-efficient NUMA-awareness. We main-
tain a dynamically-allocated list of per-socket struc-
tures that address the memory bloat problem.

• Scheduling-aware parking strategy. Our ap-
proach removes the scheduler interaction by passing
the lock to an spinning waiter and batching the wake-
up operation.

• Two scalable blocking synchronizations. We de-
sign and implement two synchronization primitives,
namely CST-mutex and CST-rwsem, that efficiently
scale beyond 100 physical cores.

2 Related Work
We classify prior research directions into three cate-
gories: NUMA-aware locks, timeout-based locks, and
runtime contention management that addresses the over-
subscription scenario.

NUMA-aware locks. NUMA-aware locks address the
limitation of NUMA-oblivious locks [27], by amortiz-
ing the cost of accessing the remote memory. These
locks are hierarchical in nature, i.e. they maintain mul-
tiple levels of lock [8, 12, 13, 17, 25] in the form of a
tree. Cohort locks [13] introduced the cohort principle,
which enables combining of any two types of locks (sim-
ilar or different) to design a hierarchical lock for two-
level NUMA machines, and later extended them for the
reader-writer locks [6]. Before this, there have been prior
works [12, 25] that separately presented the same design
principle. HMCS further generalized the cohort locks to
design an N level hierarchical version of MCS lock to sup-
port bigger machines like SGI UV [37] or HP Superdome
machine [15] that have more than two levels of NUMA
hierarchy. But, none of the introduced locks address the
problem of memory utilization as the higher level of locks
are pre-allocated. This results in sub-optimal performance
if multiple instances of locks are used (Figure 1).

Our design of NUMA-aware locks is memory con-
scious as we defer the allocation of per-socket locks until
required. The global lock is an MCS [27] lock, whereas
the per-socket lock is a variant of MCS lock (K42). All
prior hierarchical locks do not consider the memory usage
as they statically allocate the memory for all sockets [17].
This is a major concern while designing these primitives
specifically for an OS. As of this writing, we do not know
any of the NUMA-aware reader-writer locks that support
blocking readers. Other NUMA oblivious solutions that
support blocking readers are Linux’s percpu-rwsem [32],
rwsem [32], and recently proposed prwlock [22]. Both,
percpu-rwsem and prwlock that address the problem of
read mostly operations like RCU [26].

Timeout-based locks. Locks with timeout capability ad-
dress the problem of tolerating preemption of the threads,
aborting transactions in databases or even meeting the
deadline in real-time systems by abandoning their attempt
to acquire the lock. Scott et al. implemented a timeout
based locks [35, 36] that either modify the queue and
status maintained by the lock or explicitly allocated mem-
ory for each lock acquisition. These locks are inefficient
in terms of space complexity as well as do not address
the cache line bouncing problem of NUMA machines.
Moreover, the memory management will become a criti-
cal bottleneck for these locks with increasing core count.
Cohort locks [13] also present two timeout capable locks
but they implement variant of CLH lock [35], which still
suffers from explicit memory management.

2

CST locks are the family of NUMA-aware blocking
synchronization primitives that support timeout capability
for both readers and writers. CST maintains the local-
ity awareness like the other non-blocking NUMA-aware
locks. Unlike the prior locks [35], our design does not
require any explicit memory management during the lock
acquisition.

Contention management. The interaction between lock
contention and thread scheduling is the determinant of
application scalability. Johnson et al. [20] addressed this
problem by separating the contention management and
scheduling in the user space. They use admission control
to handle the number of spinning threads by running a
system-wide daemon that globally measures the load on
the system. Similar kind of studies and solutions have
been proposed for runtimes [9] and task placement strate-
gies inside the kernel without considering the lock subsys-
tem [42]. In the area of locks, the Malthusian lock [11]
is a NUMA-oblivious lock that handles thread over sub-
scription by randomly moving a waiter from an active list
to a passive list (concurrency culling), which is inspired
from Johnson et al.

CST locks are blocking synchronization primitives that
efficiently handle over-subscription, in which waiters in-
dependently add themselves to a separate list, which holds
the timed-out waiters. This is different from the Malthu-
sian lock design, where the lock holder is responsible for
moving the waiters. This severely lengthens the unlock
phase, since it has to either wake-up or park the wait-
ers. The use separate parking list is not new as various
blocking synchronization primitives [30, 31] use it in the
form of wait queues [38], which creates contention on
the list in an over-subscribed scenario. To remove the
global contention, CST locks maintain a per-NUMA, sep-
arate parking list, for both readers and writers. This also
removes the remote memory accesses, which we later
demonstrate (§7).

3 Challenges and Approaches

We present challenges and our approaches in designing
practical synchronization primitives that can scale over
100 physical cores.

C1. NUMA awareness. A synchronization primi-
tive should perform well under high contention even in
NUMA machines. However, the existing locks used in
practice [21, 30, 31] address the cache line contention
by using queue-based locks [24] for high contention, but
do not address the cache line bouncing—accessing the
remote socket—introduced in NUMA machines. The re-
mote access is at least 1.6× slower than the local access
within a socket, which can severely degrade the perfor-
mance.

Approach: To achieve high performance in NUMA
machines, hierarchical locks (e.g., Cohort lock) are
suitable. They mitigate the cross-socket access (cache
line bouncing) by passing the lock within a socket,
which relaxes the strict fairness guarantee of queue-
based locks for throughput.

C2. Memory-efficient data structures. Unfortunately,
current hierarchical locks severely bloat the memory be-
cause of their large structure size (e.g., 1600 bytes for the
Cohort lock on our eight-socket machine: 64×3×8+64),
as they statically allocate memory for all sockets, that may
be unused. Memory bloat is a serious concern, as it puts
the system under memory pressure. This is even more
alarming for synchronization primitives as they statically
allocate the memory. For example, the structure of XFS
inode increases by 4% after adding 16 bytes to the rwsem
structure. This had a huge impact on the footprint and
performance, as there can be millions of inodes cached
on a system [10]. Hence, existing hierarchical locks are
difficult to adopt in practice because they statically allo-
cate per-NUMA structures (e.g., 3 cache lines for a Cohort
lock) at initialization.

Approach: A hierarchical lock should dynamically
allocate per-NUMA structure only when it is being
used; so that we can avoid the memory bloat problem
and reduce the memory pressure on a system.

C3. Effective contention management for both over-
and under-subscribed situations. Designing synchro-
nization primitives that equally work well for both over-
and under-subscribed situations is challenging. Non-
blocking synchronization primitives, such as spinlocks
including Cohort locks, work well when a system is under-
loaded. However, when a system is over-loaded, they per-
forms poorly because spinning waiters contend each other.
On the other hand, blocking synchronization primitives,
such as mutex and read-write semaphore, are designed to
work well under an over-loaded system. Instead of spin-
ning, waiting threads sleep until a lock holder wakes one
up upon lock release. However, it imposes the overhead
of wakeup in every unlock operation, which increases
the length of the critical section. Also, frequent sleep
and wake-up operations impose additional overhead on
scheduler, which will result in a scalability bottleneck.
To mitigate this problem, many blocking synchronization
primitives [21, 30, 31], including mutex in pthread and
Linux kernel, employ a spin-then-park strategy: a waiter
spins for a while, and then parks itself out. But this ap-
proach does not consider system-wide contention; hence,
its behavior is sub-optimal when multiple locks are con-
tending. A system-wide load controller is presented by
Ryan et al. [20] but its centralized design has memory
hot spots for its control variables (e.g., the number of
ever-slept threads) to decide whether a thread sleeps or

3

spins.
Approach: To work equally well in both over- and
under-loaded cases, we should take care of system-
wide load that allows waiter to optimistically spin in
under-loaded cases and park itself out in over-loaded
cases. In addition, such a decision should be taken in
a distributed way to keep the contention management
from being a scalability bottleneck.

C4. Scalable parking and wake-up strategy. To imple-
ment an efficient blocking synchronization primitive, the
most important aspect is how and when to park (schedule
out) and wake up waiters with minimal performance over-
head. The current approach [30, 31] maintain a global
parking list to keep track of parked waiters, and a lock
holder wakes one of the parked waiters at unlock opera-
tion. However, this design has several drawbacks. Fre-
quent updating of a global parking list becomes a single
point of contention (even cache line bouncing) in an over-
loaded system. This can lead to severe performance degra-
dation, as the lock holder has to wake up each sleeping
waiter during the unlock phase, which adds an extra pres-
sure on the scheduler subsystem for waking up the waiters.
This can lead to convoy effect [1], in which all the waiters
may go to sleep. The cost of waking up varies from 2,000–
8,000 cycles in the kernel-space or from 5,000–50,000
cycles in the user-space (futex handling overhead). Ac-
cording to Amdahl’s Law, increased sequential part can
cause significant degradation of the scalability.

Approach: Instead of waking up the very next waiter,
a lock holder passes the lock to a non-sleeping waiter,
if any. This avoids waking up other threads under
high contention, and the access of the parking list
and scheduler interactions is minimized. Also, we
maintains a per-NUMA parking list to remove costly
cache line bouncing among NUMA domains to access
the parking list.

4 Design Principles
We present two scalable NUMA-aware blocking synchro-
nization primitives, a mutex (CST-mutex) and a reader-
writer semaphore (CST-rwsem), that can scale beyond
100 physical cores. At a high level, our lock is a two-
level NUMA-aware lock, where a global lock is an MCS
lock [27] and a per-NUMA local lock is a K42 lock [18]
(see Figure 2). The first level localizes the cache line
contention within a socket, whereas the second mitigates
the cache line bouncing among sockets. To enter a critical
section, a thread first acquires the per-NUMA local lock,
and then the global lock. During the release phase, it first
releases the global lock, and then the local lock. We main-
tain per-NUMA structure (snode), which is dynamically
allocated when a thread on that NUMA domain first tries
to acquire the lock to avoid the memory bloat problem,

Per-NUMA snode Per-thread qnode

Socket 1
waiting_list

parking_list

L

T1
PW

T2
UW

T3

Socket 2
waiting_list

parking_list

Global lock Local lock

PW

T4
PW

T5

Socket 3
waiting_list

parking_list

Figure 2: A CST-mutex serving for socket 1, 2, and 3. Currently,
socket 1 is being served. T1 now holds the lock (L); T3 is
spinning for its turn (UW); T2, T4, and T5 are sleeping (PW) until a
lock holder wakes them up. A lock holder, T1, will pass the lock
to T3, which is spinning, skipping the sleeping T2, to minimize
wake up overhead.

and which is freed when the lock is destroyed. Each snode
maintains a per-thread qnode in two lists: waiting_list
is a K42-style list of waiters, and parking_list is a list of
parked (or sleeping) waiters. To acquire the lock, a thread
first appends its qnode to the waiting_list of the corre-
sponding snode in a UW (unparked waiting or spinning)
status (T3 in Figure 2). If its time quantum is over, it will
park itself by changing its status to PW (parked waiting),
and then adds itself to the parking_list (T2). A lock
holder (T1) that acquires its local lock and the global lock,
passes the lock in the same NUMA domain by traversing
the waiting_list. It skips the parked waiter (T2) and
passes the lock to an active waiter (T3). If there is no ac-
tive waiter, a lock holder wakes up parked waiters in the
same or other NUMA node to pass the lock. Our reader-
writer semaphore additionally maintains a separate list
for parked readers, and writers, called a parking_list, to
handle an over-subscribed system.

We explain our design principles on efficient memory
usage (C1 and C2 in §4.1) and parking/wake-up strat-
egy (C3 and C4 in §4.2); we later show how to apply
our approaches in designing blocking synchronization
primitives: CST-mutex (§5.1) and CST-rwsem (§5.2).

4.1 Memory-efficient NUMA-aware Lock
Unlike other hierarchical locks that statically allocate per-
NUMA structures for all sockets during the initialization,
CST defers the snode allocation until the moment that
it is first accessed. The allocated snodes remain until
the lock is freed. Our dynamic allocation of snode is
especially beneficial in two cases: 1) when the number
of objects is unbounded, such as inode and mm_struct
in Linux kernel,1 and 2) when threads are designed to
access a subset of sockets—which is common in many
applications designed for scalability.

At every lock operation, we first check whether or

1The static allocation of all snodes increases the inode structure size
by 3.8× and mm_struct size by 2.6×.

4

not a corresponding snode is already present or not, and
then get an snode to acquire the local lock. This process
should be efficient and scalable. To determine whether
an snode is present, a lock maintains a global bit vector,
where each bit denotes whether a corresponding snode
is present or not. So a thread check whether an snode is
present by simply checking the bit vector. We use CAS
to atomically update the bit vector, but the number of
CAS operations is bounded to the number of sockets in a
system. A lock maintains allocated snodes in snode_list
so a thread traverses snodes through the snode_list to
find the corresponding snode. We separate the snode into
two parts— almost-read-only for snode traversal and read-
write for local lock operation—to prevent snode traversal
from incurring cache line bouncing among sockets.
4.2 Scheduling-aware Parking/Wake-up Strategy
As discussed in the previous section, the most widely-
used spin-then-park policy fails to address the scalability
problem in a NUMA architecture; it typically maintains a
single, global list (parking_list) to account the sleeping
waiters and wake one or some waiters during unlocking
to pass the lock. This approach is not scalable as it in-
curs contention on a single, global list on the NUMA
architecture, and is not performant as it passes the lock
to the potentially sleeping waiter under over-subscribed
conditions.

To address these issues, CST uses two key idea: it
maintains a per-NUMA parking_list, which minimizes
costly cross-socket cache line bouncing, and it passes the
lock to an actively spinning waiter, whose time quota is
not over yet, to minimize costly wake-up operations. The
skipped sleeping waiters are woken up in bulk when there
are no active waiters in the snode or when the global lock
is passed to the other snode. By relaxing the strict FIFO
guarantee, we can mitigate the convoy effect [1].

4.2.1 Low-contending list management

In CST, each snode maintains the K42-style waiting list,
which maintains its tail pointer, qtail. For parked wait-
ers, the snode also maintains a per-socket parking_list
to account for the parked waiters. Thus, we can avoid
the costly cache line bounding while manipulating per-
socket parking_list. For the reader-writer semaphore,
we maintain a separate readers and writers parking_list.
This design simplifies the list processing in the unlock
phase as the lock holder can pass the lock to all the parked
readers or to one of the writers. Moreover, this approach
enables a distributed parallel waking of readers at a socket
level, which can improve the throughput of the readers in
an over-subscribed scenario.

4.2.2 Scheduling-aware parking/wake-up decision

For a blocking synchronization primitive, the most im-
portant question is how to efficiently pass the lock or

wake up a waiter, while maintaining an on-par perfor-
mance for both the under- and over-subscribed cases. For
the scalable parking/wake-up decision, we remove costly
scheduler operations (i.e., wake-up) from the common,
critical path and make the parking decision in a distributed
way while considering system load. We discuss three key
ideas to address the problem of whom to pass the lock to,
when to park itself, and how to make the parking decisions
for the blocking synchronization primitives.

Passing lock to an active spinning waiter. In queue-
based locks (e.g., MCS, K42, and CLH), the successor of
a lock holder always acquires the lock. This guarantees
complete fairness, but this, unfortunately, causes severe
performance degradation in an over-subscribed system, as
it stresses the scheduler to always issue a call to wake up
the parked waiter. To mitigate this issue, we modify this
invariant of succeeding lock holder from the next waiter
to a nearest active waiter, which is still spinning for lock
acquisition. Hence, the waiting_list encompasses both
active and parked waiters in its queue, and the parked
waiters are added to a separate list: parking_list. Fig-
ure 3 (a) illustrates this scenario where T1 passes the lock
to T3 instead of T2, as T2 is parked. Later, parked waiters
are woken up in batches up to the number of physical
cores in a socket once there is no active waiter in the
waiting_list. When a parked waiter is woken up, in
common cases it re-queues itself back at the end of the
waiting_list for active spinning again. This approach
is effective because we can avoid scheduler intervention
under high contention by passing the lock to an active
waiter. In addition, a batch wake-up strategy amortizes
the cost of the wake-up phase.

Scheduling-aware spinning. The current design of hi-
erarchical locks [6, 8, 13] does not consider the amount of
time a waiter should spin before parking itself out. Thus,
in an over-loaded system, waiting threads will contend
each other, hindering the forward progress of the sys-
tem. Instead, in CST, waiting threads park themselves
as soon as their time quota is about to finish. Checking
the time quota of a task is trivial in Linux kernel using
need_resched(). Limiting the duration of spinning up
to the time quota proposed by the scheduler has several
advantages: 1) it guarantees the forward progress of the
system in an over-loaded system by not preempting the
current lock holder, as it may get more CPU cycles to
do some useful task; 2) it allows other tasks to do some
useful work rather than wasting the CPU cycles; 3) by
only spinning for the specified duration, the primitive
keeps the scheduling decisions proposed by the scheduler
to always be fairer.

Scheduling-aware parking. The current blocking syn-
chronization primitives [30, 31] do not account for the
load on the, system so they naively park waiters even

5

Per-NUMA snode Per-thread qnode

qtail

parking_list

L

next

p_next

UW UWT1 T2 T3

(i) Intial status

qtail

parking_list

L

next

p_next

PW UWT1 T2 T3

(ii) Thread T2 times out and changes its status to PW

qtail

parking_list
next

p_next

PW LT1 T2 T3

(iii) Thread T1 passes the lock to T3

(a)
Per-NUMA snode Per-thread qnode

qtail

parking_list
next

p_next

PW LT2 T3

(i) Intial status

(iii) Thread T2 acquires the lock

qtail

parking_list
next

p_next

LT2

(ii) Thread T3 wakes up T2

qtail

parking_list
next

p_next

UWT2 T3

(b)
Per-NUMA snode Per-thread qnode

qtail

parking_list

PW

next

p_next

LT2 T3

(i) Intial status

(ii) Thread T2 wakes up T3 and pass the lock

qtail

parking_list
next

p_next

LT3 T2

(c)

Figure 3: Figure (a) shows the passing of lock to a spinning waiter inside a snode. (i) T1 is the current lock holder, and T2 and T3
join waiting_list and qtail points qnode of T3. (ii) T2 times out updates and successfully CASes its state from UW to PW and adds
itself to the parking_list. (iii) T1 will release the lock. It tries to pass the lock to T2, but fails to CAS the state of T2 from UW to L. T1
goes to T3 via next pointer of T2 and successfully CASes the state of T3 from UW to L and then moves out of the unlock phase. Figure
(b) shows the waking up of any parked waiters in the parking_list. (i) T3 is in the unlock phase and is last in the waiting_list. It
successfully CASes qtail to NULL. (ii) Now, T3 checks for parked waiters in parking_list, finds T2, and updates the state of T2 from
PW to R. (iii) Since stail is NULL and there are waiters, T2 sets its state to L and acquires the local lock and will move on to acquire
the global lock. Figure (c) illustrates the passing of lock to a parked waiter at the end of the waiting_list. (1) T2 is going to release
the lock, fails to CAS the state of T3 to L, since it is parked. (2) T2 then explicitly SWAPs the state of T3 to L and wakes it up. T3 now
holds the local lock and will move on to acquire the global lock.

in the case of an under-loaded system. Hence, a naive
use of the spin-then-park approach results in a convoy
effect as the waiters will park themselves as soon as their
time quota is up, and the lock holder has to do an extra
operation of waking them up, thereby severely degrad-
ing the performance of the systems for an under-loaded
scenario [29]. Also, previous research [20] shows that
deciding the system load is critical for the spin-then-park
approach, as it not only removes the scheduler interaction
from the parking phase, but also improves the latency of
the lock/unlock phase.

We decide the system load by peeking at the number of
running tasks on a CPU (i.e., the length of scheduling run
queue for a CPU). Checking the number of running tasks
is almost free because the per-CPU scheduler in an OS
kernel already maintains up-to-date per-CPU active task
information. Also, maintaining a system-wide, central
information, like the approach used by Johnson et al. [20],
is very costly, as the cost of collecting the total number
of active tasks increases with increasing core count; the
global load does not match the local load, as it cannot
catch the load imbalance introduced either because of new
incoming tasks or because of rescheduling of the periodic
tasks.

5 Scalable Blocking Synchronizations
Based on the aforementioned approaches, we de-

sign and implement two different types of queue-based
NUMA-aware blocking synchronization primitives: a mu-
tex and a reader-writer semaphore. We first present the
design of our mutex along with the parking strategy and
later extend it to a reader-writer semaphore. The pseudo-
code is presented in Figure 4.

5.1 Mutex (CST-mutex)
CST-mutex is a two-level Cohort lock, which we have
extended to be a blocking synchronization primitive
by adding several design choices, such as scheduling-
awareness, efficient spinning, and parking strategy, and
passing of the lock to the spinning waiter. The global
lock employs an MCS lock, whereas the local lock is a
K42 lock [18], a variant of the MCS lock. We choose the
K42 lock because it does not require an extra argument in
the function call as it maintains a qnode structure on the
stack. But any queue-based spinlocks can be used for the
local lock. The top level lock maintains a dynamically-
allocated socket structure—snode—to keep track of the
global lock, maintain local lock information such as its
waiting_list and the next waiter (for the K42 lock), and
also parking_list information for the parked waiters.
The MCS lock protocol has two status values: waiting
(lock waiter) and locked state (lock holder). To support
the blocking behavior, we keep the locked state (denoted
as L), and extend the waiting state to spinning/unparked
(UW) and parked (PW) state. We also introduce a special
state, called re-queue (R), that notifies the waiter to re-
acquire the local lock.

Extended Cohort lock/unlock protocol. A thread
starts by trying to acquire a local lock inside a socket.
If there are no predecessors during the lock acquisition,
it proceeds to acquire the global lock. After acquiring
the global lock, it becomes the lock holder and enters
the critical section (CS). The other threads that do not
acquire the local lock are the local waiters, and the ones
waiting for the global lock are the socket leaders, and they
wait for their respective predecessor to pass the lock. In
the release phase, the lock holder passes the lock locally

6

1 def mutex_lock(lock):
2 snode = find_or_add_snode(lock) # Find or allocate snode once
3 while True:
4 lock_status = acquire_local_lock(snode)
5 if lock_status & ACQUIRE_GLOLBAL_LOCK is True: # Acquire global lock?
6 acquire_global_lock(lock, snode)
7 return
8
9 def acquire_local_lock(snode):

10 cur_qnode = init_qnode(status=UW, next=None) # Initialize on-stack qnode
11 pred_qnode = SWAP(&snode.qtail, &cur_qnode) # Add to snode's waiting list
12 if pred_qnode is None: # Check for predecessor
13 cur_qnode.status = L|ACQUIRE_GLOLBAL_LOCK # Should acquire global lock
14 return cur_qnode.status
15 pred_qnode.next = &cur_qnode # Update predecessor next pointer
16 cur_qnode.task = current_task
17 while cur_qnode.status == UW: # Spinning for the local lock
18 if task_timed_out(cur_qnode.task): # Time quota is over
19 if park_write_qnode(snode, cur_qnode) == REQUEUE: # Check for requeue state
20 if cur_qnode.status == L: # Local lock acquired
21 break
22 else:
23 return R # Restart the local lock acquisition
24 update_next_qnode(snode, cur_qnode) # Update the next qnode (k42 protocol)
25 return cur_qnode.status
26
27 def acquire_global_lock(lock, snode):
28 snode = init_snode(snode, status=UW, next=None) # Initialize snode
29 pred_snode = SWAP(&lock.stail, &snode) # Add to global lock's waiting list
30 if pred_snode is None:
31 snode.status = L # Acquired global lock
32 return
33 pred_snode.next_snode = snode # Update predecessor next pointer
34 snode.leader_task = current_task
35 while snode.status == UW: # Spin till the global lock holder passes the lock
36 if task_timed_out(current_task): # Leader time quota is over
37 if CAS(&snode.status, UW, PW): # Modify the state to PW
38 schedule_out(snode.leader_task) # Schedule out the task
39 lock.current_serving_socket = snode
40
41 def mutex_unlock(lock):
42 snode = lock.current_serving_socket # Get the lock holder's snode #
43 if snode.local_batch_count < BATCH_COUNT: # local lock batching
44 snode.local_batch_count += 1
45 # Pass the lock to waiter with UW state and already has the global lock
46 if pass_local_lock(snode, acquire_global=False) is True:
47 return # Successfully found an active waiter
48 snode.local_batch_count = 0 # Reset the batch count
49 release_global_lock(lock, snode) # Release the global lock
50 release_local_lock(lock, snode) # Release the local lock
51 if snode_parking_list_is_not_empty(snode): # Remove parked waiter starvation
52 wake_up_parked_waiters(snode) # Wake up set of parked waiters
53
54 def release_local_lock(lock, snode):
55 if snode.qnext is None: # Check for next qnode, if any
56 if CAS(&snode.qtail, &snode.qnext, None) is True: # No qnode present
57 wake_up_parked_waiters(snode) # Wake up set of parked waiters
58 while snode.qnext is None: # qnode joined the qtail (waiting)
59 continue
60 if pass_local_lock(snode, acquire_global=True) is False:
61 with parking_list_lock(snode): # Acquire parking list lock to wake up a waiter
62 snode.qnext.status = L|ACQUIRE_GLOLBAL_LOCK # Update status
63 remove_from_parking_list(snode.qnext) # Update the parking list
64 schedule_in(snode.qnext.task) # Wake up the parked waiter
65
66 def release_global_lock(lock, snode):
67 if snode.next_snode is None: # Check for next snode, if any
68 if CAS(&lock.stail, snode, NULL) is True: # No snode present
69 return
70 while snode.next_snode is None: # Some snode joined the global lock stail
71 continue
72 if CAS(&snode.next_snode.status, UW, L) is False: # Check for parked snode
73 snode.next_snode.status = L # next snode is parked, still pass the lock
74 schedule_in(snode.next_snode.leader_task) # Wake it up for global lock acquisition

75 def park_write_qnode(snode, cur_qnode):
76 park_flag = False # Denotes whether waiter parked or not
77 with parking_list_lock(snode): # Acquire parking list lock
78 if CAS(&cur_qnode.status, UW, PW) is True: # Try to update the state
79 add_to_parking_list(snode, cur_qnode) # Update parking list
80 park_flag = True # Parking was successful
81 if park_flag is True:
82 schedule_out(cur_qnode.task) # Schedule the task out
83 # cur_qnode.task is now awake, the task now returns REQUEUE
84 return REQUEUE # Should check for requeue phase
85 else:
86 return DO_NOT_REQUEUE # Acquired the lock
87
88 def pass_local_lock(snode, acquire_global):
89 qnode = snode.qnext # Search from snode.next
90 while True: # Search for an active waiter
91 if CAS(&qnode.status, UW, L) is True:
92 if acquire_global is True: # Need to acquire the global lock
93 L = L|ACQUIRE_GLOLBAL_LOCK # Update L status bit
94 return True
95 if qnode.next is None:
96 break
97 qnode = qnode.next # Find next qnode
98 snode.qnext = qnode # Found no one, updating qnext with tail
99 return False

100
101 def wake_up_parked_waiters(snode):
102 with parking_list_lock(snode): # Acquire the parking list
103 for qnode in parking_list(snode): # Iterate over stored parked waiters
104 qnode.status = R # All waiter should requeue right now
105 remove_from_parking_list(snode, qnode) # Update parking list
106 schedule_in(qnode.task) # Schedule in the waiter
107
108 def write_lock(lock):
109 mutex_lock(lock) # Acquire mutex first
110 for s in snode_list(lock): # Check for active readers
111 while s.active_readers is not 0:
112 if task_timed_out(current_task):
113 schedule() # Only schedule, will come back
114
115 def write_unlock(lock):
116 mutex_unlock(lock) # Release the mutex
117 if lock.stail is None: # There is no waiting snode
118 for s in snode_list(lock): # Traverse the snode
119 wake_up_first_read_waiter(s.reader_parking_list) # Wake-up a readeer
120
121 def read_lock(lock):
122 snode = find_or_add_snode(lock) # Find or allocate the snode
123 ret = True
124 while True: # Spin, till acquired the lock
125 while lock.stail is not None: # Check for no waiters
126 if task_timed_out(current_task):
127 ret = park_reader_task(lock, snode) # park the reader
128 if ret is True:
129 FAA(&snode.active_readers, 1)
130 if lock.stail is not None: # No one in the global lock tail
131 FAA(&snode.active_readers, -1)
132 ret = True
133 continue
134 break
135
136 def read_unlock(lock):
137 snode = find_or_add_snode(lock)
138 FAA(&snode.active_readers, -1) # Update the snode readers count.
139
140 def park_reader_task(lock, snode):
141 # Wait and park youself until global lock tail is NULL
142 park_and_wait_on_event(&snode.reader_parking_list, (lock.stail is not None))
143 if CAS(&snode.reader_is_parked_leader, False, True) is True:
144 FAA(&snode.active_readers, 1) # Decrease the active reder count
145 wake_up_all_read_waiters(&snode.reader_parking_list) # Wake up all readers
146 snode.reader_is_parked_leader = False
147 return False
148 return True

Figure 4: Pseudo-code of CST-mutex (lines 1 – 74), CST-rwsem (lines 108 – 148), and their parking/wakeup (lines 75 – 106). We use
three atomic instructions: CAS(addr,old,new) atomically updates the value at addr to new and return True if the value at addr is old.
Otherwise, it simply returns False without updating addr; SWAP(addr,val) atomically writes val to addr and returns the old value at
addr; FAA(addr,val) atomically increases the value at addr by val.

to its successor, if any. After this, the successor does
not acquire the global lock and immediately enters the
critical section. Later, a lock holder passes the global
lock to a global waiting successor after a bounded num-
ber of times to prevent starvation. We now describe the
CST-mutex protocol in detail, which is an extension of the
aforementioned steps.

Acquire local lock: A thread T starts by first finding
(or adding if not present) its snode (line 2). Contrary to
the Cohort lock protocol, T tries to acquire the local lock
(line 4) in an infinite for loop because it may restart the
protocol after being parked. In the local lock phase, T
initializes its qnode (line 10) and then SWAPs the qtail

of snode with qnode. It then goes to acquire the global
lock, when no waiters are present; otherwise, spins on
its status, which changes to either L or R state (line 17).
While waiting, T initiates the parking protocol (lines 75
– 86) on timing out, where it tries to CAS the status of
qnode from UW to PW. T goes back on failure; otherwise, it
adds itself to the parking_list and schedules out. Later,
when a lock holder wakes it up, it resumes back (line 83)
and either acquires the local lock or restarts the protocol,
depending on its updated status. If T has L status after
being woken up, it goes on to acquire the global lock as
the previous lock holder releases the global lock before
waking up sleeping waiters. To mitigate the cache line

7

bouncing, T checks for the global lock flag (line 5). If not
set, T already holds the global lock; otherwise, it goes to
acquire it.

Acquire global lock: T initializes its snode (line 28)
and adds itself to the waiting_list (line 29); then it
acquires the global lock if there is no waiter (line 31);
otherwise, waits until its predecessor snode passes the
lock (line 35). On timing out, while spinning (line 35),
T CASes status of snode from UW to PW and schedules out
(line 38); otherwise, it acquires the lock as the predecessor
passed the lock. Even after being woken up, it goes on to
acquire the global lock, without re-queueing.

Release local lock: T gets the current snode (line 42)
and tries to locally pass the lock based on the batching
threshold (line 43). To locally pass the lock, T first tries to
CAS the status of its successor from UW to L. If it is success-
ful, the unlock phase is over; otherwise, it traverses the
waiting_list to find an actively running waiter (lines 88
– 99). Figure 3 (a) illustrates this scenario, where T1 ends
up passing the lock to T3 since T2 has PW state. Note that
if all the waiters are parked, (line 99), then T releases the
global lock (line 49) and then the local one (line 50). T can
also initiate both release phases when an snode exceeds
the batching threshold.

In the local unlock phase, T finds the snode qnext
pointer to pass the lock. If qnext is NULL, T updates the
qtail of snode with NULL (line 68) and wakes up waiters
in the parking list to R state to requeue them back to the
waiting_list (line 101). Figure 3 (b) illustrates the sce-
nario, where T3 is the last one in the waiting_list. In the
release phase, after resetting qtail to NULL, T2 wakes up
parked T3 after updating its status from PW to L. If there
are waiters (lines 60 – 64), then T again tries to pass the
lock to a spinning waiter in the waiting_list (line 88).
If successful, a waiter acquires the local lock and then
goes for the global one, since T has already released that.
If all, including the last waiter, are parked (lines 60–64),
T passes the local lock to the last waiter and wakes it up.
This is required because T cannot reset the qtail pointer,
as there maybe some parked waiters; hence, passing the
lock to the last thread is mandatory. Figure 3 (c) illus-
trates this scenario, where T2 is about to release the local
lock and finds that T3 is the last one and has PW status. T2
has to wake up T3 with a L state (not R), so that T3 can
maintain the K42/MCS lock protocol.

Release global lock: The protocol varies from the MCS
protocol while passing the lock. For an existing snode
successor, thread T tries to CASes the status of its succeed-
ing snode from UW to L. If successful, the lock is passed;
otherwise T explicitly updates the status to L and wakes
up the succeeding snode leader (lines 72 – 74).

5.2 Reader-writer Semaphore (CST-rwsem)
Our reader-writer semaphore is a writer-preferred ver-
sion of the Cohort reader-writer lock [6] (CST-rwsem) with
two extensions: 1) application of our parking strategy
to the readers, and 2) our own version of mutex algo-
rithm (§5.1). CST-rwsem relaxes the condition of ac-
quiring the critical section by multiple threads in read
mode. Hence, CST-rwsem maintains an active reader
count (active_readers) on each snode to localize the
contention on each socket at the cost of increasing the
latency for the writers. We further extend snode to sup-
port the parking of readers by maintaining a separate
parking_list for them, so that readers can separately
park themselves without intervening with the writers.

Write lock: Thread T first acquires the CST-mutex
(line 109). Then it traverses all snodes to check whether
the value of active_readers is zero (line 111). Since our
algorithm is a writer-preferred one, T blocks other read-
ers from entering the CS, since they can only proceed if
there is no writer. Once the writer has acquired the mutex
lock, it does not park itself, as this is a writer-preferred
algorithm and the writer will soon enter the CS (lines 110
– 113).

Read lock: Thread T first finds its snode (line 122) and
waits until there are no writers (line 125). On timing
out, while waiting, T adds itself to the parking_list
and schedules itself out until there are no writers
(line 142). The last writer wakes up the first readers in
the parking_list and wakes up the remaining sleeping
waiters in its own socket. Lines 143 – 146 illustrate the
waking up of the parked reader and subsequent readers.

Write unlock: Thread T first releases the writer lock (line
116). If there are no writers (line 117), then T checks
for any sleeping waiters across all snode. If there are
any, it only wakes up the very first waiter, which will
subsequently wake up the remaining waiters to acquire
the read lock (line 119). It provides two advantages: 1) it
ensures distributed, parallel wake-up of the readers, and
2) it does not lengthen the writer unlock phase along with
the least number of remote memory accesses.

Read unlock: Thread T searches for its snode from
the list of existing sockets and atomically decreases the
active_readers count by 1. T does not have to wake up
any writer because our approach inhibits the writer, which
is going to be the lock holder, from parking itself out.

6 Implementation
We have implemented our locks on Linux Kernel v4.6
and v4.7. Since our interface requires dynamic memory
management, we further provide a destructor API to re-
claim the snodememory as part of the termination of data
structures (e.g., destroy_inode for inode). For our eval-
uation, we modify the inode structure to our CST-rwsem

8

in v4.7 and CST-mutex in v4.6 since inode mutex was re-
placed to inode rwsem at v4.7 [40]. We also modify the
virtual memory subsystem of the Linux kernel: mmap_sem
and their replacement required changes to 650 calls to
mmap_sem and five calls for the inode. In total, our lock
implementations comprises 1,100 lines of code (LoC) and
can easily replace the Linux’s mutex

7 Evaluation
We evaluate CST by answering the following questions:

• What is the impact of locks on real-world applica-
tions in terms of performance and memory utiliza-
tion? (§7.1)

• What is the impact of locks on the kernel-provided
operations in various scenarios? (§7.2)

• How does each design aspect help in improving the
performance? (§7.3, §7.4)

Evaluation setup. We use three workloads from MOS-
BENCH [3] that scale well with increasing core count and
use the memory subsystem intensively: Histogram, Metis,
and Psearchy. They represent different usage of the VM
subsystem, where the ratios between write (memory map-
ping) and read (page-fault) operations are small, medium
and large. Furthermore, to evaluate the performance of
handling the over-subscribed situations, we choose two
microbenchmarks from FXMARK [29] that are dependent
on the inode structure: they stress various file system
operations such as writing in a shared file (DWOM) and
enumerating files (MRDM). Last, we break down the perfor-
mance implications of our each design aspect by using
a simple hash table microbenchmark. We perform all of
our experiments on an 8-socket, 120-core machine with
Intel Xeon E7-8870 v2 processors.

7.1 Application Benchmarks
We evaluate the performance and scalability implications
of CST-rwsem on various applications, when we adopt it
in the memory subsystem in Linux. For comparison, we
also evaluate the current implementation of rwsem in the
Linux kernel, as well as a Cohort lock implementation [17]
ported in the kernel. For each benchmark results, we
use Vanilla for the native Linux’s rwsem, Cohort for a
Cohort reader-writer lock, and CST for our CST-rwsem
implementation.

Histogram. This is a MapReduce application, which
is page-fault intensive. It mmaps an 11GB file at the
beginning and keeps reading this file while each thread
performs a simple computation. As a result, the NUMA-
aware Cohort and CST locks outperform the native im-
plementation beyond more than 60 cores and maintain
similar performance trends up to 120 cores, as shown
in Figure 5. The main reason for showing better perfor-
mance in both locks is that they localize the number of
active readers for mmap_sem within a socket, thus spending

less time for lock contention: both locks only show 2%
idle time as the Cohort lock is non-blocking by design and
CST effectively behaves as a non-blocking lock. On the
other hand, the vanilla version shows 10.5% of idle time
as its ineffective parking strategy kicks in under an under-
subscribed situation. In summary, both locks outperform
the native rwsem by 1.2× at 120 cores.

Metis. This workload runs one worker thread per core
and mmaps 12GB of anonymous memory for generating
tables for map, reduce, and merge phases, so its perfor-
mance is bounded by the page-fault operations. Figure 5
(b) shows that both Cohort and CST locks outperform the
original version by 1.6× as soon as the frequency of write
operation increases. Since the Cohort lock is non-blocking,
it does not sleep, whereas the CST lock efficiently han-
dles the under-subscribed case by not parking the threads,
resulting in only 0.5% of idle time. Moreover, both locks
batch readers, which improves the throughput of the sys-
tem. On the other hand, the original version has 39% of
idle time. This is due to its naive parking strategy, which
keeps on parking the readers and writers.

Psearchy. This workload is a parallel version of
searchy that does text indexing, and is mmap-intensive,
which stresses the memory subsystem from multiple
userspace threads. It does around 100,000 small and
large mmap/munmap operations, which taxes the writer
side of the rwsem. Figure 5 (c) shows that both, Cohort
and CST, locks maintain a almost similar performance
and outperform the original rwsem by 1.4×. They spend
only around 11.4% of idle time, whereas the original one
shows around 53.4% of idle time. Hence, it pays the cost
of waking up waiters, whereas our approach mitigates
the scheduler intervention by efficiently spinning on the
waiters. Even though CST has an equivalent time spent in
the kernel (30%), this time is mostly spent by the waiters
spinning on their own status.

Summary. Figure 5 shows that as the contention be-
tween the readers and writers starts increasing, the orig-
inal rwsem idle time increases. This happens because
most of the waiters park themselves as they run out of
their time quota. The original rwsem suffers from cache
line contention since it only employs a spin-based ap-
proach, severely degrading the performance, even though
it incorporates an optimization [24]. With our efficient
spinning strategy that checks its local load, CST locks
have the same benefit as the Cohort locks in case of a
highly-contended but under-subscribed system.

In general, both Cohort and CST outperform the Linux
native one in terms of performance. However, Cohort
locks use the same memory with each core count as it
statically allocates the memory. On the other hand, CST
efficiently allocates memory (Figure 5) which only in-
creases with increasing socket count. Hence, CST saves

9

0

1000

2000

3000

4000

5000

6000

0 20 40 60 80 100 120
0

1000

2000

3000

4000

5000

6000
Jo

bs
/h

ou
r

M
em

or
y

(b
yt

es
)

#thread

0

500

1000

1500

2000

2500

0 20 40 60 80 100 120
0

500

1000

1500

2000

2500

M
em

or
y

(b
yt

es
)

#thread

0

50

100

150

200

250

0 20 40 60 80 100 120
0

50

100

150

200

250

M
em

or
y

(M
B

)

#thread

Vanilla
Cohort
CST

(a) Histogram (b) Metis (c) Psearchy

Figure 5: Impact of synchronization primitives on the scalability and memory utilization for three different applications: (a)
Histogram, (b) Metis, and (c) Psearchy—with Linux’s native reader-writer semaphore (Vanilla), Cohort reader-writer lock, and our
CST-rwsem.

0

0.5

1

1.5

2

2.5

3

1 2 4 8 16 32 64 128256

M
op

s/
se

c

#thread

(a) Shared block overwrite (DWOM)

0

50

100

150

200

250

1 2 4 8 16 32 64 128256
#thread

(b) File enumeration (MRDL)

Vanilla rwsem
Vanilla mutex
Cohort rwsem

CST rwsem
CST mutex

Figure 6: Impact of synchronization primitives on the scala-
bility of the two microbenchmarks of FXMARK [29] that affect
the file system operations such as (a) overwriting a block in a
shared file, and (b) enumerating files in a shared directory.

up to 10× of memory for each workload when running
on a single socket, and up to 1.5 – 9.1× at 120 cores.
7.2 Over- And Under-subscribed Cases
We compare the performance of CST locks with the kernel
and the Cohort locks, in both a over- and under-subscribed
system, where multiple instances of locks are in use. We
chose to run FXMARK because it stresses the file-system
operations by only stressing various kernel components
that interact with the virtual file-system layer, without
having any actual user-space computation. We use two
micro-benchmarks from FXMARK [29] to show how mul-
tiple instances, static lock size allocation, contention, and
convoy effect affect the scalability of file-system opera-
tions. The first one overwrites a block in which threads
overwrite a block (DWOM). This is representative of I/O
workloads in databases, where a log is maintained and
shared by multiple processes/threads. It stresses the write
part of rwsem and mutex. The other one is read-intensive
and enumerates all the files in a shared directory (MRDM).
It stresses the readers’ throughput. However, the earlier
Linux versions relied on mutex (till v4.6), which serial-
ized all the readers [40].
Block overwrite. In this micro-benchmark, each thread
opens a shared file and overwrites its own block for a
specified duration (30 seconds). Hence, this workload
stresses the writer part of the lock as a thread acquires
the write lock to update the inode information. Figure 6
(a) shows the impact of various locks on the performance
of block overwriting. mutex performs better than any
of the rwsem algorithms, since they are built on top of
mutex and pay the processing cost to distinguish between

readers and a writer (e.g. CST-mutex is 20% faster than
CST-rwsem). Furthermore, the efficient parking design
maintains the performance even in the over-subscribed
scenario (i.e., 2× more threads) for the CST locks. For
the Cohort locks, scheduler interaction becomes the bot-
tleneck as the tasks get frequently rescheduled, which
takes up 54.4% of the time since it is a non-blocking
primitive. The Linux versions (both mutex and rwsem)
suffer from cache line bouncing till 60 cores, but starts
to suffer from scheduler intervention since the threads
start parking themselves. This increases the idle time to
98% for 120 threads and 90% for 240 threads. Hence,
CST locks outperform Cohort locks by 1.6× and 2.3×,
and Linux one by 2.6× and 2.5× for 120 and 240 threads,
respectively.
File enumeration. This is a read-dominated micro-
benchmark that creates a specified number of threads
that enumerate files in a shared directory. Figure 6 (b)
shows the impact of various locks. CST-rwsem achieves
almost linear scalability with increasing threads till 120
cores and further maintains its performance in an over-
subscribed case. Our rwsem outperforms Cohort by 3.3×
and 3.7×, and the Linux one by 4.6× and 4.7× for 120
and 240 threads, respectively. The Cohort lock still suffers
from the scheduler interaction, whereas the Linux version
suffers from cache-line contention, as it maintains a global
count of the readers compared to the per-socket storage
by both of the hierarchical locks. The mutex is not the
right choice since it serializes the parallel lookup. Even
then, both Cohort and CST locks outperform the Linux
one by 3.7× for 120 threads, but CST outperforms the
Cohort lock by 1.4×.
7.3 Performance Breakdown
We evaluate how each component of CST contributes to
the overall performance improvement by using a hash
table that is protected by a single lock and is running in
Linux kernel. To quantify the impacts of NUMA aware-
ness and parking strategy, we keep the read and write ratio
at 10% in this benchmark. We vary the thread count from
1–600 threads on 120 cores to show the effectiveness of
our blocking lock even in the over-subscribed scenario.
Figure 7 (a) shows the readers’ throughput with increasing
thread count. We evaluate three variants of the reader-

10

0

200

400

600

800

1 2 4 8 16 32 64 128 256 512

M
re

ad
s/

se
c

#thread

(a) Hash table lookup (rwsem)

0
200
400
600
800

1000

120 240 360 480 600

Ti
m

e
(n

s)

#thread

(b) Single cache line access (mutex)

Vanilla
Cohort

CST-Spin
CST-Wake

CST-DWake

Vanilla
CST-S

CST-WA
CST-WS

Figure 7: Two micro-benchmarks to illustrate the performance
impact of various techniques employed by CST-rwsem and
CST-mutex. Figure (a) represents the lookup performance of
a concurrent hash table for 10% writes, which uses rwsem. Fig-
ure (b) shows the time taken to update a single cache line by
holding a mutex with increasing thread count.

side parking strategy: 1) no reader parking (CST-Spin), 2)
global wakeup of parked readers (CST-Wake), and 3) dis-
tributed wakeup (CST-DWake). For an under-subscribed
system, CST variants outperform both Cohort and Linux
by 4.6× and 10×, respectively, as Cohort suffers from
scheduler intervention (86.4%) and mutex is contending
on the global reader count value. Beyond 120 threads,
both the Cohort and CST-Spin approaches perform poorly
compared to Linux, as they are non-blocking, thereby
loosing their effectiveness of NUMA-awareness. On the
contrary, CST-Wake and CST-DWake scale up to 600
threads, thereby showing the importance of blocking be-
havior. CST-DWake, which represents a distributed wake-
up scheme for the readers, wakes up more readers in
parallel, thereby improving the readers’ performance by
1.2× over the global wakeup strategy and outperforming
Linux by 9.1×.

Another micro-benchmark shown in Figure 7 (b) is
updating a single cache line by multiple threads, which
vary from 120 to 600. We use Linux’s mutex and com-
pare it with three variants: 1) simple mutex that does
not modify the status invariant of queue locks (CST-S),
2) one that modifies the invariant but wakes up all the
parked waiters (CST-WA), and 3) one that wakes up a se-
lected number of waiters (CST-WS). For 120 threads, the
Linux mutex suffers from cache-line bouncing and later
suffers from the contention on its global parking_list
while still maintaining a permissible performance beyond
120 threads. On the other hand, all CST variants address
the cache line bouncing issue for 120 threads. However,
CST-S suffers from spinning at higher core count since the
waiters waste CPU cycles, thereby preempting the lock-
holder after 120 threads. On the other hand, CST-WA and
CST-WS maintain the performance even at increasing
core count. CST-WA further solves the thundering-herd
problem and lock-holder preemption problem, since it

Latency RW-lock

Kernel (ns) CST (ns)

Reader (1 reader) 28.67 37.57 (0.7×)
Reader (120 readers) 22,105.86 1,925.31 (11.5×)
Writer (0 reader) 29.12 74.98 (0.4×)
Writer (119 readers) 44,523.12 4,252.21 (10.5×)

Table 1: Empty critical section latency for reader-writer
semaphores

does not wake up all the waiters in one shot. As a result,
CST-WS outperforms the Linux version by 1.7×, at 6×
oversubscription.

7.4 Critical Section Latency
We evaluate the lock/unlock pair latency of rwsem to
gauge the effectiveness of CST against the Linux ver-
sion. Table 1 shows that NUMA-aware locks are a better
fit in the case of multiple readers/writers, whereas it suf-
fers in the case of low contention since it has to pay the
cost of finding the snode (for readers) and has to per-
form multiple atomic operations to get the lock. We can
improve the latency at low contention by employing a
Hysteresis-based technique [7].

8 Discussion and Limitations
NUMA-aware locks show better performance at high con-
tention whereas they show lower performance at low con-
tention compared to non-NUMA-aware alternatives (e.g,
test-and-test-and-set lock), as they incur the cost of extra
atomic operations. We are investigating to use hardware
transactional memory (TSX) to acquire and release the
locks in a transaction like prior work [7]. The current
designs of queue-based locks do not address the problems
in nested-level locking, where a thread acquires various
lock objects. This is common in large code bases with
have multiple subsystems which interact among them-
selves such as Linux [14]. Hence, the introduction of
queue-based locks can degrade the performance and this
will exacerbate in hierarchical locks.

9 Conclusion
Synchronization primitives are the basic building blocks
of any parallel application, out of which the blocking
synchronization primitives are designed to handle both
over- and under-subscribed scenarios. We find that the
existing primitives have sub-optimal performance for ma-
chines with large core count. They suffer either from
cache-line contention or the convoy effect in both scenar-
ios, and are oblivious to the existing NUMA machines.
In this work, we present scalable NUMA-aware, memory-
efficient blocking primitives, which exploit the NUMA
hardware topology along with scheduling-aware parking
and wakeup strategies. We implement CST-mutex and
CST-rwsem which provide the same benefit of existing
non-blocking NUMA-aware locks in under-subscribed
scenario, while maintaining similar peak performance in
over-subscribed cases.

11

References

[1] M. Blasgen, J. Gray, M. Mitoma, and T. Price. The Convoy
Phenomenon. SIGOPS Oper. Syst. Rev., 13(2):20–25, Apr. 1979.

[2] S. Boyd-Wickizer, A. T. Clements, Y. Mao, A. Pesterev, M. F.
Kaashoek, R. Morris, and N. Zeldovich. An Analysis of Linux
Scalability to Many Cores. In Proceedings of the 9th USENIX
Symposium on Operating Systems Design and Implementation
(OSDI), Vancouver, Canada, Oct. 2010.

[3] S. Boyd-Wickizer, A. T. Clements, Y. Mao, A. Pesterev, M. F.
Kaashoek, R. Morris, and N. Zeldovich. An Analysis of Linux
Scalability to Many Cores. In Proceedings of the 9th USENIX
Conference on Operating Systems Design and Implementation,
OSDI, 2010.

[4] S. Boyd-Wickizer, M. F. Kaashoek, R. Morris, and N. Zeldovich.
Non-scalable locks are dangerous. In Proceedings of the Linux
Symposium, Ottawa, Canada, July 2012.

[5] D. Bueso and S. Norton. An Overview of Kernel Lock Im-
provements, 2014. https://events.linuxfoundation.org/
sites/events/files/slides/linuxcon-2014-locking-
final.pdf.

[6] I. Calciu, D. Dice, Y. Lev, V. Luchangco, V. J. Marathe, and
N. Shavit. NUMA-aware Reader-writer Locks. In Proceedings of
the 18th ACM Symposium on Principles and Practice of Parallel
Programming (PPOPP), pages 157–166, Shenzhen, China, Feb.
2013.

[7] M. Chabbi and J. Mellor-Crummey. Contention-conscious,
Locality-preserving Locks. In Proceedings of the 21st ACM
Symposium on Principles and Practice of Parallel Programming
(PPOPP), pages 22:1–22:14, Barcelona, Spain, Mar. 2016.

[8] M. Chabbi, M. Fagan, and J. Mellor-Crummey. High Performance
Locks for Multi-level NUMA Systems. In Proceedings of the
20th ACM Symposium on Principles and Practice of Parallel
Programming (PPOPP), San Francisco, CA, Feb. 2015.

[9] G. Chadha, S. Mahlke, and S. Narayanasamy. When Less is
More (LIMO):Controlled Parallelism Forimproved Efficiency. In
Proceedings of the 2012 International Conference on Compilers,
Architectures and Synthesis for Embedded Systems, CASES ’12,
2012.

[10] D. Chinner. Re: [regression, 3.16-rc] rwsem: optimistic spinning
causing performance degradation, 2014. https://lkml.org/
lkml/2014/7/3/25.

[11] D. Dice. Malthusian Locks. CoRR, abs/1511.06035, 2015. URL
http://arxiv.org/abs/1511.06035.

[12] D. Dice, V. J. Marathe, and N. Shavit. Flat-combining NUMA
Locks. In Proceedings of the Twenty-third Annual ACM Sympo-
sium on Parallelism in Algorithms and Architectures, SPAA ’11,
pages 65–74, 2011.

[13] D. Dice, V. J. Marathe, and N. Shavit. Lock Cohorting: A Gen-
eral Technique for Designing NUMA Locks. In Proceedings of
the 17th ACM Symposium on Principles and Practice of Parallel
Programming (PPOPP), pages 247–256, New Orleans, LA, Feb.
2012.

[14] H. Dickins. [PATCH] mm lock ordering summary, 2004.
http://lkml.iu.edu/hypermail/linux/kernel/0406.3/
0564.html.

[15] H. P. Enterprise. HPE Integrity Superdome X, 2016. https://
www.hpe.com/h20195/v2/GetPDF.aspx/c04383189.pdf.

[16] Facebook. A persistent key-value store for fast storage environ-
ments, 2012. http://rocksdb.org/.

[17] H. Guiroux, R. Lachaize, and V. Quéma. Multicore Locks: The
Case is Not Closed Yet. In Proceedings of the 2016 USENIX
Annual Technical Conference (ATC), pages 649–662, Denver, CO,

June 2016.

[18] IBM. IBM K42 Group, 2016. http://researcher.watson.
ibm.com/researcher/view_group.php?id=2078.

[19] Xeon Processor E7-8890 v4 (60M Cache, 2.20 GHz). In-
tel, 2016. http://ark.intel.com/products/93790/Intel-
Xeon-Processor-E7-8890-v4-60M-Cache-2_20-GHz.

[20] F. R. Johnson, R. Stoica, A. Ailamaki, and T. C. Mowry. Decou-
pling Contention Management from Scheduling. In Proceedings of
the 15th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS),
pages 117–128, New York, NY, Mar. 2010.

[21] X. Leroy. The open group base specifications issue 7, 2016. http:
//pubs.opengroup.org/onlinepubs/9699919799/.

[22] R. Liu, H. Zhang, and H. Chen. Scalable Read-mostly Synchro-
nization Using Passive Reader-writer Locks. In Proceedings of
the 2014 USENIX Annual Technical Conference (ATC), pages
219–230, Philadelphia, PA, June 2014.

[23] W. Long. qspinlock: Introducing a 4-byte queue spinlock, 2014.
https://lwn.net/Articles/582897/.

[24] W. Long. locking/mutex: Enable optimistic spinning of lock
waiter, 2016. https://lwn.net/Articles/696952/.

[25] V. Luchangco, D. Nussbaum, and N. Shavit. A Hierarchical CLH
Queue Lock. In Proceedings of the 12th International Conference
on Parallel Processing, Euro-Par’06, pages 801–810, 2006.

[26] P. E. McKenney, J. Appavoo, A. Kleen, O. Krieger, R. Russell,
D. Sarma, and M. Soni. Read-Copy Update. In Ottawa Linux
Symposium, OLS, 2002.

[27] J. M. Mellor-Crummey and M. L. Scott. Algorithms for Scalable
Synchronization on Shared-memory Multiprocessors. ACM Trans.
Comput. Syst., 9(1):21–65, Feb. 1991.

[28] Microsoft. SQL Server 2014, 2014. http://www.
microsoft.com/en-us/server-cloud/products/sql-
server/features.aspx.

[29] C. Min, S. Kashyap, S. Maass, W. Kang, and T. Kim. Understand-
ing Manycore Scalability of File Systems. In Proceedings of the
2016 USENIX Annual Technical Conference (ATC), Denver, CO,
June 2016.

[30] I. Molnar. Linux rwsem, 2006. http://www.makelinux.net/
ldd3/chp-5-sect-3.

[31] I. Molnar and D. Bueso. Generic Mutex Subsystem,
2016. https://www.kernel.org/doc/Documentation/
locking/mutex-design.txt.

[32] O. Nesterov. Linux percpu-rwsem, 2012. http://lxr.free-
electrons.com/source/include/linux/percpu-
rwsem.h.

[33] Data Sheet: SPARC M7-16 Server. Oracle, 2015.
http://www.oracle.com/us/products/servers-
storage/sparc-m7-16-ds-2687045.pdf.

[34] SAP. SAP HANA 2: the transformer, 2015. http://hana.sap.
com/abouthana.html.

[35] M. L. Scott. Non-blocking Timeout in Scalable Queue-based Spin
Locks. In Proceedings of the Twenty-first Annual Symposium on
Principles of Distributed Computing, PODC ’02, pages 31–40,
New York, NY, USA, 2002. ISBN 1-58113-485-1.

[36] M. L. Scott and W. N. Scherer. Scalable Queue-based Spin Locks
with Timeout. In Proceedings of the 6th ACM Symposium on
Principles and Practice of Parallel Programming (PPOPP), pages
44–52, Snowbird, Utah, June 2001.

[37] SGI. SGI UV, The World’s Most Powerful In-Memory Supercom-
puters, 2017. https://www.sgi.com/products/servers/
uv/.

12

https://events.linuxfoundation.org/sites/events/files/slides/linuxcon-2014-locking-final.pdf
https://events.linuxfoundation.org/sites/events/files/slides/linuxcon-2014-locking-final.pdf
https://events.linuxfoundation.org/sites/events/files/slides/linuxcon-2014-locking-final.pdf
https://lkml.org/lkml/2014/7/3/25
https://lkml.org/lkml/2014/7/3/25
http://arxiv.org/abs/1511.06035
http://lkml.iu.edu/hypermail/linux/kernel/0406.3/0564.html
http://lkml.iu.edu/hypermail/linux/kernel/0406.3/0564.html
https://www.hpe.com/h20195/v2/GetPDF.aspx/c04383189.pdf
https://www.hpe.com/h20195/v2/GetPDF.aspx/c04383189.pdf
http://rocksdb.org/
http://researcher.watson.ibm.com/researcher/view_group.php?id=2078
http://researcher.watson.ibm.com/researcher/view_group.php?id=2078
http://ark.intel.com/products/93790/Intel-Xeon-Processor-E7-8890-v4-60M-Cache-2_20-GHz
http://ark.intel.com/products/93790/Intel-Xeon-Processor-E7-8890-v4-60M-Cache-2_20-GHz
http://pubs.opengroup.org/onlinepubs/9699919799/
http://pubs.opengroup.org/onlinepubs/9699919799/
https://lwn.net/Articles/582897/
https://lwn.net/Articles/696952/
http://www.microsoft.com/en-us/server-cloud/products/sql-server/features.aspx
http://www.microsoft.com/en-us/server-cloud/products/sql-server/features.aspx
http://www.microsoft.com/en-us/server-cloud/products/sql-server/features.aspx
http://www.makelinux.net/ldd3/chp-5-sect-3
http://www.makelinux.net/ldd3/chp-5-sect-3
https://www.kernel.org/doc/Documentation/locking/mutex-design.txt
https://www.kernel.org/doc/Documentation/locking/mutex-design.txt
http://lxr.free-electrons.com/source/include/linux/percpu-rwsem.h
http://lxr.free-electrons.com/source/include/linux/percpu-rwsem.h
http://lxr.free-electrons.com/source/include/linux/percpu-rwsem.h
http://www.oracle.com/us/products/servers-storage/sparc-m7-16-ds-2687045.pdf
http://www.oracle.com/us/products/servers-storage/sparc-m7-16-ds-2687045.pdf
http://hana.sap.com/abouthana.html
http://hana.sap.com/abouthana.html
https://www.sgi.com/products/servers/uv/
https://www.sgi.com/products/servers/uv/

[38] L. Torvalds. Linux Wait Queues, 2005. http://www.tldp.org/
LDP/tlk/kernel/kernel.html#wait-queue-struct.

[39] L. Torvalds. The Linux Kernel Archives, 2017. https://www.
kernel.org/.

[40] A. Viro. parallel lookups, 2016. https://lwn.net/Articles/
684089/.

[41] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Sto-
ica. Spark: Cluster Computing with Working Sets. In Proceedings
of the 2Nd USENIX Conference on Hot Topics in Cloud Comput-
ing, HotCloud’10, 2010.

[42] S. Zhuravlev, J. C. Saez, S. Blagodurov, A. Fedorova, and M. Pri-
eto. Survey of Scheduling Techniques for Addressing Shared
Resources in Multicore Processors. ACM Comput. Surv., 45(1),
Dec. 2012.

13

http://www.tldp.org/LDP/tlk/kernel/kernel.html#wait-queue-struct
http://www.tldp.org/LDP/tlk/kernel/kernel.html#wait-queue-struct
https://www.kernel.org/
https://www.kernel.org/
https://lwn.net/Articles/684089/
https://lwn.net/Articles/684089/

	Introduction
	Related Work
	Challenges and Approaches
	Design Principles
	Memory-efficient NUMA-aware Lock
	Scheduling-aware Parking/Wake-up Strategy
	Low-contending list management
	Scheduling-aware parking/wake-up decision

	Scalable Blocking Synchronizations
	Mutex ([0.5]CST-mutex)
	Reader-writer Semaphore ([0.5]CST-rwsem)

	Implementation
	Evaluation
	Application Benchmarks
	Over- And Under-subscribed Cases
	Performance Breakdown
	Critical Section Latency

	Discussion and Limitations
	Conclusion

